How To Deal With Too Much Iron In Your Garden’s Soil: A Guide

If you’ve seen leaf bronzing or tiny brown specs on your plants’ leaves, it is possible that there is too much iron in your garden’s soil. This is a common problem that can have many different causes. There are a few solutions depending on the cause of too much iron in your soil.

Too much iron in your garden’s soil must be fixed by lowering the iron content available to plants. This can be done by adjusting the soil pH, balancing iron with other micronutrients, or improving water’s aeration and drainage.

In this comprehensive guide, I’ll walk you through everything you need about iron in your soil. Read on to learn about the symptoms, causes, and treatments to fix having too much iron in your garden’s soil.

See also: How to Lower Manganese Levels In Soil

Micronutrients and Their Functions

Iron is one of the seven micronutrients that plants need to grow. Other micronutrients include copper, cobalt, boron, molybdenum, manganese, and zinc. These nutrients are found in varying small amounts in soil all over the planet and in trace amounts in water sources.

These minerals are called micronutrients because they are only needed in small quantities by the plant. Other nutrients such as nitrogen, phosphorus, or potassium are called macronutrients and are needed in much greater amounts.

Micronutrients serve important functions needed for plants to grow and be healthy. Iron is used as a catalyst to synthesize chlorophyll, which is required for photosynthesis.

Without chlorophyll, plants would not be able to produce enough energy to grow. Iron is also used for a plant’s protein synthesis and for nitrogen fixation and reduction. Other micronutrients regulate membranes, controlling nitrogen levels, energy processes, and overall yield.

See also: How To Repot Overgrown Succulents Like A Pro: A Quick Guide

Iron Excess and Toxicity

Too much iron in your soil is called “iron excess” or “iron toxicity.” While small amounts of micronutrients like iron are needed for plant growth, too many of them can harm the plant. A careful balance is needed.

Symptoms of Iron Toxicity

Some plants are particularly vulnerable to iron toxicity, including geraniums, lisianthus, African marigolds, pentas, New Guinea impatiens, and lilies. Before we can think about treating iron toxicity, we must first identify it.

The plants in your garden may suffer from iron toxicity if leaves show signs of bronzing (getting darker), if brown spots form on the leaves, or if the plant’s growth becomes stunted.

Bronzing is the most common symptom. While small amounts of iron are needed for chlorophyll production, having too much iron affects the chlorophyll itself, making it darker. This prevents the plant from absorbing sunlight.

Too much iron also interrupts vital cell processes that produce proteins and energy for the plant. If left untreated, the plant will eventually die.

Micronutrient Imbalances

The seven micronutrients needed by plants need to be balanced. Generally, toxicity or excess of one nutrient leads to a deficiency in others. Another micronutrient excess causes almost all micronutrient deficiencies.

Having too much iron, for example, interrupts the plant’s ability to take in manganese. This is known as a “nutrient lockout.” Sometimes plants suffering from iron toxicity will also show symptoms of manganese deficiency because of this.

Iron toxicity can also lockout and prevent the absorption of important macronutrients like potassium, nitrogen, and phosphorus. These nutrients are essential for plant growth.

Correlated Symptoms of Iron Toxicity

Iron toxicity most commonly locks out manganese, and chlorosis (yellowing of leaves) occurs as a result. Like iron, manganese is an immobile micronutrient, but manganese deficiency affects both young and old foliage. If manganese is deficient, yellow leaves will be seen at the top and the bottom of the plant, which could be a sign of iron toxicity.

Leaf tips may curl and show chlorosis if iron prevents potassium from being absorbed. Purple spots may also appear on leaves. Plant, root, and fruit growth will be much slower if the plant does not have enough potassium.

Iron toxicity can also lead to smaller amounts of nitrogen being absorbed from the soil. Without enough nitrogen, plants will grow slower, show chlorosis, not grow as many new leaves, and not grow wider.

If iron locks out phosphorus, the plant will not grow as many roots and will be more vulnerable to cold temperatures.


If your plants demonstrate some of these symptoms, it’s possible they’re suffering from iron toxicity. Later, we’ll discuss testing procedures you can use to make sure that iron is causing the problem and not another nutrient.

Next, we’ll look at the causes of iron toxicity and how we can fix them.

See also: Here’s How to Germinate Tomato Seeds Faster: a Quick Guide

Causes of Iron Toxicity

Generally, iron toxicity problems come from the soil. Soil can contain either too much or too little iron. But in reality, the amount of iron in the soil is less important than the amount of iron available to the plant in the soil.

Iron can exist in two different oxidation states, either Fe2+ or Fe3+. Fe3+ is the more common form of iron in the soil, but this form is not available to plants and is immobile. Fe2+, on the other hand, is mobile and available to plants.

The causes of iron toxicity, as we’ll see, are usually because of an imbalance in Fe2+ vs. Fe3+ rather than a lack or abundance of iron in the soil. This imbalance leads to too much iron available to the plant (iron toxicity) or too little (iron deficiency).

1- Soil pH

The ratio of Fe2+ to Fe3+ is most heavily determined by the soil’s pH, which measures acidity. Soils with lower pH are more acidic and will have more Fe2+, while soils with higher pH are more alkaline and Fe3+. A neutral pH – where the soil is neither basic nor alkaline – is around 7.

Usually, plants are grown in soil with a pH between 6 and 7. Some plants prefer even more acidic soil, in the range of 5 to 6, and others prefer alkaline soil with a pH between 7 and 8. Differences in soil pH affect the availability of nutrients and micronutrients.

A few factors can influence the soil pH, changing the amount of available iron.

Fertilizer Ingredients Affecting Soil pH.

Most fertilizers contain large amounts of nitrogen, phosphorus, and potassium, the three macronutrients that plants need more than anything else.

Using fertilizer can affect the nutrient mixture in the soil and change its pH. Fertilizers high in nitrogen can have either high or low pHs, depending on the form of nitrogen used. Ammonium-containing fertilizers will lower the pH of the soil, while nitrate-containing fertilizers will raise the pH.

The most common form of phosphorus used in fertilizers is phosphoric acid. This increases the soil’s acidity, lowering the pH and making iron more available.

Potassium fertilizers have little-to-no effect on soil pH. Potassium fertilizer does not greatly affect the availability of iron in the soil.

Natural Factors Affecting Soil pH

Two additional natural factors are important in determining iron availability in soil. Aeration of water in the soil is important because water can dissolve carbon dioxide, forming carbonic acid. There is more carbon dioxide in stagnant, still water. Carbonic acid lowers the pH of the soil, and poorly aerated soils usually have higher iron availability.

The soil itself can have varying pH. Soils worldwide have a pH range of 5-8, and the geographic location or source of the soil can determine its acidity. Different plants prefer to grow in different pH soils, which can lead to compatibility problems.

See also: 22 Disadvantages and Advantages of Hydroponics (What You Should Know)

2- Other Causes of Iron Toxicity

Iron toxicity is generally caused by having too much iron in the soil. A few other factors can lead to excess iron in the soil.

1- Fertilizer Components Affecting Iron Availability

Manure fertilizers are usually rich in all micronutrients. When used to treat soil, these can greatly increase iron availability to plants.

Some manure fertilizers have been treated with lime and have high pH, which will decrease soil iron availability. Alternatively, if too much fertilizer is used, microbes will produce carbon dioxide and bicarbonate, immobilizing iron in the soil and making it unavailable to plants.

Crop residue fertilizers often contain iron from the decayed plant matter. Adding these to soil can also increase the availability of iron. Like manure, if too much fertilizer is used, microbes will produce chemicals that immobilize iron in the soil.

Some supplements contain a form of iron called an iron chelate. Adding this to soil greatly increases iron availability, and adding too much can lead to iron toxicity.

2- Micronutrient Imbalance

Plants can only absorb a limited amount of nutrients from the soil. Iron toxicity is a problem if iron is absorbed in a greater proportion than other important nutrients. This can happen because iron is too available or other nutrients are not available enough.

If soil is low in manganese or phosphorus, iron will be absorbed in greater amounts which can lead to iron toxicity. Because of this, iron toxicity is closely related to manganese or phosphorus deficiencies.

Zinc, potassium, molybdenum, nickel, and nitrogen deficiencies can lead to greater iron uptake into plants and cause iron toxicity.

Carbonates and bicarbonates in the soil can bind strongly to iron and hold it there, making it unavailable to plants.

3- Natural Variations in Climate and Iron Content

Geographic location and climate are important determining factors for how much iron is available to plants.

Rainfall is important because iron will become more available if there is excess water in the soil. The right amount of water is needed to provide a stable amount of iron, and too much water can lead to too much iron.

Soil also varies widely in iron content and pH. Soils worldwide can have a pH as low as 5 or as high as 8.5. Iron content varies greatly from place to place. Soils can contain as little as 0.2% iron or as much as 55%. Soils with higher iron content or lower pH are likely to have more iron availability for plants and are more likely to lead to iron toxicity.

Now that we’ve learned the symptoms and causes of iron toxicity, we can discuss how to deal with it in your garden or farm.

See also: How to Propagate Succulents with Honey: A Complete Guide

How To Fix Too Much Iron In Soil

If you’ve observed the symptoms of iron toxicity in your garden, these next steps will help you to confirm and treat it in your soil.

Testing and Identifying Iron Toxicity

You should always start by making sure that iron toxicity is, indeed, the problem. Treat your plants for iron toxicity when they are suffering from another problem, such as copper toxicity. You can make the problem much worse and kill your plants.

Soil pH Testing

The first test you should do is a soil pH test. Ensure that your soil’s pH is reasonable, somewhere between 6 and 7 for most plants.

If your soil pH is below 5, it is highly likely that you will have an excess of iron. Your plants will likely suffer from aluminum toxicity, manganese deficiency, and phosphorus deficiency at these pH levels.

You can test soil pH using a digital meter, a kit, or a soil pH strip. These are available online, usually at low costs.

Soil Micronutrient Testing

If your soil pH is in a reasonable range for your plants, but your plants are still showing symptoms of nutrient deficiency, then the next step is to test the micronutrient content in the soil.

To do a soil test, you’ll usually have to send a sample of your soil to a lab. This can get expensive, but it will likely be worth the effort if your plants are struggling.

The lab will determine any deficient or excess micronutrients and the expected impact of these imbalances on crop yield, and they’ll give you a plan on how to fix the micronutrient imbalance.

Soil micronutrient test kits are also available for purchase online, such as the LaMotte Professional Soil Test Kit.

If the soil is deficient or excessive in any nutrient – not just iron – this should be treated, as any nutrient imbalance will affect plant growth and health.

Plant Tissue Testing

Plant tissue testing can also reveal any nutrient excesses or deficiencies. These can be unreliable if performed improperly, but they can still provide useful information regarding the plant’s physiology.

Tissue tests can be either destructive when a plant sample is removed and sent to a laboratory or non-destructive when the analysis takes place without harming the plant. Fewer non-destructive tests are available for analyzing iron and micronutrient content; instead, these usually determine nitrogen and other macronutrient contents.

A good tissue test will determine which nutrients are available and used by the plant and which are not. You can adjust your plant’s soil accordingly once you have this information.

See also: How To Water Succulents Without Drainage: A Complete Guide

Treating Iron Toxicity

If you’ve identified an iron excess in your soil leading to iron toxicity in your plants, there are a few ways to treat it. Following these procedures, you should expect your plants to become healthier after a few days or weeks.

Since iron is an immobile nutrient in plants, the symptomatic leaves will not change for a long time. However, if treated properly, new growth in the plant will be healthy.

To deal with too much iron in your garden’s soil, you’ll want to lower the amount of available iron. This can be achieved in a few different ways.

pH Adjustment with Lime

Since iron becomes more available at high acidities (low pH), you can decrease your soil’s acidity (raise the pH). Make sure to test the pH first, as above, to ensure that it is acidic.

To decrease the acidity of your soil, you can add lime. There are many different types of lime, so be sure to select the one that is best for your application. The placement and time of lime application also can have important effects, depending on the type of lime you use.

Using lime makes the soil more alkaline and benefits plants by filling the soil with nutrients, calcium, and magnesium. Making the soil alkaline also protects against aluminum and manganese toxicity.

You can use lime to raise the pH of the soil to a neutral range, but if you add too much, highly alkaline soil can kill the plants. If the soil pH becomes too high, you can add elemental sulfur or sulfate-containing chemicals.


Since iron becomes more available and toxic in stagnant, pooled, poorly-aerated water, one solution is to increase water flow to your plants.

You can follow steps to increase water pressure in your irrigation system or improve water drainage from your garden.

An alternative is to completely wash the soil bed by running large amounts of water through it. This is a more extreme method, but it will remove almost all nutrients from the soil. Then, once the soil dries, apply fertilizers to regain the right balance of nutrients.

Reducing Iron Availability by Adding Bicarbonates

Bicarbonates bond to iron in the soil and will prevent the iron from being available to plants.

By adding bicarbonate-containing chemicals to the soil, you can reduce the availability of iron to treat iron excess. This works particularly well in soils with a neutral pH.

Increase Other Micronutrient Concentrations

If iron availability is too high, the plants will absorb more iron than other micronutrients. Instead of lowering the soil’s iron content, another option is to increase the concentration of other nutrients. By doing this, the plants will absorb a more balanced ratio of iron and other important nutrients.

One of the best sources of micronutrients is compost. Compost has a large supply of all micronutrients; by adding them in large quantities, the soil will become more balanced.

Alternatively, you could add specific micronutrient compounds to raise the concentration of zinc or molybdenum, for example. This treatment works best if only one or two micronutrients are deficient. Make sure not to add too much of any single nutrient, leading to other toxicity issues and nutrient lockouts.

See also: How To Get Rid Of Golden Rain Tree Bugs: A Complete Guide

Other Nutrient Deficiencies and Excesses

While not rare, iron toxicity is much less likely to occur than other common nutrient imbalances. Here are some of the other most common nutrient imbalances you will likely encounter.

Make sure to test for iron and other nutrient content to be certain of what kind of imbalance your plant is facing before you attempt to treat it.

1- Nitrogen Deficiency

Nitrogen is the most important macronutrient for plants. Symptoms of nitrogen deficiency include chlorosis of leaves. Leaves turn yellow, and if the deficiency is not treated, they become more yellow over time.

Necrosis: when leaves die and remain on the plant – does not occur with nitrogen deficiency. Instead, leaves that die from nitrogen deficiency will fall off the plant.

Nitrogen deficiency is the most common nutrient deficiency in plants. It is caused when too much carbon-containing matter is present in the soil. Bacteria in the soil use nitrogen to break down carbon sources. Not enough nitrogen will be available for plants if sawdust or other organic material is added to the soil.

Nitrogen deficiency is most easily resolved by adding nitrogen-containing fertilizers such as ammonium phosphate, calcium ammonium nitrate, or urea. Spraying urea on the leaves can also solve nitrogen deficiencies.

See also: How To Get Rid Of Worms In Potted Plants: A Quick Guide

2- Phosphorus Deficiency

Phosphorus is the second most important nutrient for plants. Phosphorus deficiency leads to chlorosis of leaves, but slower than nitrogen deficiency. Phosphorus deficiency can be easily identified by large, dark patches of necrosis on leaves, particularly near the veins.

Phosphorus deficiency, like nitrogen deficiency, is common in plants. It can be caused by cold climates that slow root growth, dry soil conditions, and unsuitable soil pHs. Phosphorus is most available to plants at a pH between 6-7.5.

Phosphorus deficiency can also be caused by iron toxicity, as too much iron can prevent phosphorus from being absorbed.

Phosphorus deficiency can be treated with inorganic fertilizers containing phosphoric acid, P2O5, or manure. These are rich in phosphorus and can provide the phosphorus that the plant needs.

3- Potassium Deficiency

Potassium is another important macronutrient for plants. Potassium deficiency causes chlorosis in leaves, beginning at their tips and slowly moving inwards. Necrosis also occurs at the tips of the leaves.

Potassium deficiency is common due to potassium ions being highly soluble and easily leached from soils. Clay soils contain colloids, which are more likely to contain potassium, but other soil types do not have as much potassium available.

Potassium deficiency is easily treated by using potassium-containing fertilizers such as potassium chloride. Wood ash is also high in potassium but must be used sparingly because it will raise soil pH.

See also: How To Keep Ants Off Strawberry Plants: Here’s How To Do It

4- Other Micronutrient Deficiencies

Most micronutrient deficiencies show similar symptoms and are related to each other. Iron excess can lock out manganese and other micronutrients, and manganese excess can lock out iron and other micronutrients.

Both iron deficiency and manganese deficiency appear similar to each other, so identifying the right one can be a challenge.

Symptoms of micronutrient deficiencies include chlorosis, necrosis on new growth, or other irregularities in color (like bronzing) or shape (like deformed leaves).

All micronutrient deficiencies and imbalances, including iron toxicity, can be treated in approximately the same way:

  1. Make sure all minerals are present in the water. Don’t use reverse osmosis water, which has all nutrients removed. If they are not present, you can add trace mineral drops to add these micronutrients back into the water.
  2. Test the pH of water and soil. Make sure it is in the 6-7 range or suitable for your plant. Test the soil and the plant’s micronutrient content to ensure all the micronutrients are present and being absorbed.
  3. Flush the soil with water to remove all nutrients that have built up and to break any nutrient lockout. Wait for the soil to dry before watering the plant again.

Plants only need tiny quantities of micronutrients; usually, the trace amounts in a water source will supply enough for them.

If your plants have micronutrient deficiencies, it is likely because of the water source or a nutrient lock, where an excess of one nutrient prevents another nutrient from being absorbed.

See also: How To Remove Aphids From Kale: A Quick Guide


Whether you’re tilling a small garden or running a large farm, you’re likely to come across nutrient deficiencies in your plants from time to time. Iron toxicity is caused when too much iron is available to plants in the soil. By absorbing so much iron, other nutrients are locked out, and the plant becomes sick.

To deal with too much iron in your garden’s soil, you’ll want to raise the pH to a more neutral level, aerate the water, and ensure all other nutrients are available in sufficient quantities.



Hello friends, I am Altiné. I am SO excited you are here! I am the guy behind Plants Heaven is a blog that shares information about preparing, creating, and maintaining gardens in and out of your home, regardless of where you live. My goal is to help you learn to love gardening and reap the benefits that come with it. I am still learning; therefore, the information I share on this site may not always be “expert” advice or information. But, I do my VERY best to make sure the information shared on this blog is both accurate and helpful.

Recent Posts

How To Deal With Too Much Iron In Your Garden’s Soil A Guide -Too much iron in your garden’s soil needs to be fixed by lowering the iron content available to plants. This can be done by adjusting the soil pH, balancing iron with other micronutrients, or by improving aeration and drainage of water.